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Abstract We introduce an improved position-based dynamics method with corrected smoothed particle

hydrodynamics (SPH) kernel to simulate deformable solids. Using a strain energy constraint that follows the

continuum mechanics, the method can maintain the efficiency and stability of the position-based approach

while improving the physical plausibility of the simulation. We can easily simulate the behavior of anisotropic

and plastic materials because the method is based on physics. Unlike the previous position-based simulations

of continuous materials, we use weakly structured particles to discretize the model for the convenience of de-

formable object cutting. In this case, a corrected SPH kernel function is adopted to measure the deformation

gradient and calculate the strain energy on each particle. We also propose a solution for the interparticle

inversion and penetration in large deformation. To perform complex interaction scenarios, we provide a sim-

ple method for collision detection. We demonstrate the flexibility, efficiency, and robustness of the proposed

method by simulating various scenes, including anisotropic elastic deformation, plastic deformation, model

cutting, and large-scale elastic collision.
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1 Introduction

The dynamic simulation of deformable solids is a classic topic in computer graphics. In recent years,
physical-based methods have achieved remarkably realistic simulation effects, such as the material point
method [1–3]. However, these methods come at the cost of increased computational complexity and
time consumption. Müller et al. [4] proposed a position-based dynamics (PBD) approach that can
simulate cloth movement in real time. The approach works on the position of vertices or particles in
deformable objects directly; thus, it is more controllable and faster than the traditional physical-based
methods. Subsequently, the approach has been widely investigated and used in computer games, the visual
effects industry, and many other interactive applications. Nevertheless, most existing position-based
approaches are geometrically motivated, which cannot handle complex material behavior. Therefore, we
aim to develop a position-based method that improves the computation speed while retaining the physical
properties of materials.

Several studies have combined the continuum mechanics with the position-based approach to simulate
many physical phenomena [5–7]. Instead of using geometric distance to constrain the particle positions
like the traditional PBD method, they used potential energy as the constraint, which enables the simu-
lation of the physical properties of different materials by choosing the constitutive model. Most previous
studies adopted mesh-based discretization methods, such as the finite element method (FEM), which can
directly calculate the tensor variables on discrete elements through the shape function. However, object

*Corresponding author (email: zxyang@um.edu.mo, ehwu@um.edu.mo)

†Cao W and Lyu L have the same contribution to this work.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3464-2&domain=pdf&date_stamp=2022-12-23
https://doi.org/10.1007/s11432-021-3464-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3464-2
https://doi.org/10.1007/s11432-021-3464-2


Cao W, et al. Sci China Inf Sci January 2023 Vol. 66 112108:2

cutting and fracture simulation will be confronted with sophisticated topological changes. To address the
aforementioned problem, the particle-based method is employed.

In this study, we develop a particle-based method with a combination of PBD and continuum me-
chanics. We use strain energy to constrain the particle positions within an object, where the weakly
structured particles discretize the model for the convenience of deformable object cutting. Compared
with the mesh-based method, the interpolation of the tensor variables into discrete particles is challeng-
ing for the particle-based method. Inspired by the smoothed particle hydrodynamics (SPH) method [8],
we adopt a corrected SPH interpolation scheme to compute the deformation gradient located in potential
energy. In comparison with the PBD approach based on FEM [5], a further advantage of our method
is that when the number of particles is the same in the two methods, our method considerably reduces
the number of constraints, thus improving the solving speed. Because of the continuum mechanics,
we can easily simulate anisotropic materials. We also propose a solution for the interparticle inversion
and penetration in large deformation. Moreover, both self-collision and collision between objects are
considered.

In summary, our contributions are as follows.

• An energy constraint of continuum mechanics is proposed in combination with particle-based dis-
cretization, which makes the PBD method follow the physical properties of the object during deformation
while at the same time dealing with the cutting problem more conveniently.

• A corrected SPH kernel function is introduced to solve the interpolation problem of the deformation
gradient on each particle, which can preserve both linear and angular momenta.

• A technique is developed to solve the problem of particle inversion and penetration in large defor-
mation.

2 Related work

In the past two decades, PBD has been a well-known approach in deformable object simulation research
and is widely used in interactive applications, such as computer games and virtual reality. Compared
with traditional physical-based methods, PBD is more appealing because of its simplicity and robustness.
Bender et al. [9, 10] presented a survey of position-based simulation methods. Müller et al. [4] first pro-
posed a complete PBD framework. Then, they utilized a distance constraint to immediately manipulate
the positions of vertices within an object, which simplified the dynamic solution process compared with
the previous methods. Macklin and Müller [11] applied PBD to incompressible fluid simulation because
of its unconditionally stable time integration. Macklin et al. [12] improved the PBD by using a parallel
constraint solver and simulated a wide range of interacting scenes in real time.

However, the constraints utilized in the previous studies are geometrically driven, which are unsuit-
able for simulating complex physical phenomena. To solve the problem, Bender et al. [5] combined a
continuum-based formulation with the PBD approach to computing the strain energy. They implemented
plasticity and anisotropy simulations of cloth and volumetric bodies. Bouaziz et al. [6] also presented a
set of continuum-based energy potentials and replaced the Gauss-Seidel solver in the PBD method with
the Jacobi solver. Same as the previous study, they adopted the FEM for discretization and further
realized the fracture animation of cloth. Müller et al. [13] proposed constraints for the entries of Green’s
strain tensor instead of constraining the distances between particles. They applied the constraints to both
triangular and tetrahedral meshes, enabling the PBD method to flexibly control the strain direction and
achieve the simulation of anisotropic materials. Macklin et al. [14] presented an extended PBD algorithm
(XPBD) that employs a compliant constraint formulation, which corresponds to elastic potential energy.
In comparison with PBD, XPBD frees the deformable object stiffness from the control of the time step
and iteration count to realize the simulation of arbitrary elastic materials. Cetinaslan [7] introduced a
modified Morse potential to the parallel XPBD framework.

Although the aforementioned methods introduced strain or potential energy to enhance the physical
properties of simulation, they adopted mesh or structured particles for discretization, which is unsuitable
for fracture animation. For example, Ref. [6] simulated the fracture of cloth based on two-dimensional
triangular meshes. He and colleagues [15] presented a meshless peridynamics framework built based
on [6] to simulate versatile elastoplastic materials. By contrast, the difficulty in adjusting the structure of
tetrahedral meshes in fracture will increase in the three-dimensional case. Therefore, we prefer to utilize
weakly structured particles to discretize the 3D model into the PBD method. In combination with the
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continuum mechanics, a challenge for the unstructured particle approach is how to project the tensor
variables onto discrete particles.

As a typical meshless method, SPH is well-known in the field of computer graphics. Early SPH methods
were mainly concerned with fluid. Ihmsen et al. [16] provided a detailed survey on this topic. Desbrun
and Gascuel [17] extended SPH to animate deformable bodies. However, the standard SPH interpolation
does not satisfy rotational invariance, which is fatal to solid simulation. Therefore, some correction of
SPH is usually required when simulating soft body deformation. Solenthaler et al. [18] utilized SPH with
a unified particle model to simulate fluid-solid interactions. Becker et al. [19] presented a corotational
formulation integrated with SPH for deformable solids. Gerszewski et al. [20] modified the SPH for
animating elastoplastic materials. Within the SPH framework, Jones et al. [21] introduced an embedded
space for elastoplastic simulation. Recently, in the field of physics and engineering, Refs. [22,23] proposed
improved SPH methods to solve large deformation problems. Similarly, the moving least squares (MLS) is
another well-known approach for meshless solid simulation, and it can be used to correct the SPH kernel.
Müller et al. [24] achieved point-based animation by using MLS to interpolate the tensor field. Martin et
al. [25] chose both linear and quadratic generalized MLS to generate the unified simulation for rods, shells,
and solids. Chen et al. [26] achieved unified multiphase continuum simulation and interaction by using
the MLS reproducing kernel (MLSRK). Several other meshless methods, such as sparse frame-based
models [27, 28] and elastic weighting mechanism [29], also obtained good simulation results. Inspired
by meshless solid simulation and considering the balance between efficiency and accuracy, we adopt a
corrected SPH kernel to calculate the deformation gradient on particles.

To solve the element inversion problem in large deformation, Irving and Teran et al. [30, 31] proposed
the invertible finite element (IFE) approach. McAdams et al. [32] presented a stable solution by careful
treatment of linearization. Stomakhin et al. [33] improved the IFE framework by extrapolating the
polynomial of the uninverted part in the singular value space. Bender and colleagues [5] also employed
the IFE approach for inversion handling. Smith et al. [34] focused on flesh simulation, proposed a
novel Neo-Hookean elastic model robust to kinematic rotations and inversions, and adopted mesh-based
methods.

Several anisotropic methods for the simulations using the strain energy function to calculate defor-
mation have been proposed successively. Irving et al. [30] accomplished transverse isotropy through an
extra stress term. Based on their work, Xu et al. [35] introduced a principal stretch method to design
orthotropic materials. Xu and colleagues [36] focused on modeling general hyperelastic materials with
peridynamics and added an anisotropic kernel. Clyde et al. [37] developed a novel orthotropic hyperelastic
constitutive model for woven fabrics.

3 Background

The PBD method has advantages in simulating large-scale interactive scenes because of its simplicity
and stability. Most of its early studies were geometrically motivated and could not describe the complex
physical behavior of deformable objects. As a result, some PBD methods combining continuum mechanics
have emerged. This section will provide an overview of the PBD approach and some basic notations in
continuum mechanics.

3.1 PBD framework

Our work is conducted within the PBD framework. We suppose that a deformable object is discretized
into n vertices with the positions x = {x1, . . . ,xn} and masses m = {m1, . . . ,mn}. The PBD algorithm
mainly consists of three steps. First, the position x

n+1 of each vertex is predicted by a time integration
scheme. Then, a set of bilateral constraints C(x) = 0 are defined to modify the predicted vertex positions.
Finally, the vertex velocities vn+1 are updated with the modified positions. The core of the PBD approach
lies in the definition of position constraints. The purpose here is to determine the position corrections
∆x that satisfy C(x+∆x) = 0. The equation can be expanded by the Taylor polynomial, as follows:

C(x+∆x) ≈ C(x) +∇xC
T(x)∆x = 0. (1)

From this, the position correction of each vertex can be computed as follows:

∆xi = wi∇xi
C(x)λ, (2)
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where wi = 1/mi is the inverse vertex mass. λ is a Lagrange multiplier calculated by substituting (2)
into (1), as follows:

λ = −
C(x)

∑

j wj

∣

∣∇xj
C(x)

∣

∣

2 , (3)

where
∑

j represents all of the vertices in the constraint that are associated with xi. The conservations
of linear and angular momenta are implicit in the aforementioned constraints.

Since the traditional PBD constraint is geometrically driven, a stiffness parameter is also needed to
control the elastic property. The simplest method for merging stiffness is to multiply the position correc-
tion ∆xi by the stiffness parameter ki ∈ [0, 1] [4]. However, stiffness is dependent on the simulation time
step and iteration count. To overcome this limitation, XPBD [14] provided a total Lagrange multiplier
∆λ instead of λ in (3), which is defined as follows:

∆λ = −
C(x) + α̃λ

∑

j wj

∣

∣∇xj
C(x)

∣

∣

2
+ α̃

, (4)

where α̃ = α/∆t2 is related to the stiffness expression considering the time step ∆t. Afterward, the
position correction can be reformulated as follows:

∆xi = wi∇xi
C(x)∆λ. (5)

Similar to the vertex position x, λ is updated with ∆λ in each time step. We refer the readers to [14] for
more details.

3.2 Notations in continuum mechanics

To make the simulation more physically plausible, our work is combined with continuum mechanics. Let
X ∈ R

3 denote the particle position in the undeformed configuration and let x ∈ R
3 denote the particle

position in the deformed configuration. The deformation gradient F = ∂x/∂X is the Jacobian matrix
of deformation mapping, which distinguishes shape changes from the displacement of the deformable
objects. The properties of materials can be expressed by the strain energy Ψ(F ) and stress tensor P (F ),
functions of the deformation gradient, where P (F ) = ∂Ψ(F )/∂F . We provide a detailed definition of
Ψ(F ) and P (F ) in the subsequent section according to the specific situation.

4 Our method

In this section, we will introduce our particle-based method to the PBD framework. We employ the
corrected SPH kernel to compute the deformation gradient on each particle. The method follows the
continuum mechanics by using an energy constraint, making it easier for us to simulate anisotropic
materials. The inversion and collision problems are also considered.

4.1 Corrected SPH interpolation

Inspired by [5], we use the strain energy to replace the previous geometric constraints, thus following
the continuum mechanics. For this reason, the position constraint on each particle is defined as C(x) =
Ψ(F ) = 0. Ψ(F ) is the energy density function. The common constitutive models used to formulate
Ψ(F ) include the corotated linear, Saint Venant Kirchhoff (StVK), and Neo-Hookean models. The StVK
and Neo-Hookean are nonlinear models that exhibit more complex deformation behavior but require more
computation time. All of the aforementioned models can be directly applied to our algorithm framework.
Most of our elastic simulations adopt the Neo-Hookean constitutive model in the following form:

Ψ(F ) =
µ

2
(tr(FT

F )− 3)− µ ln J +
λ

2
ln2 J, (6)

where F
T
F is the right Cauchy-Green strain tensor. J = det(F ) is the determinant of the deformation

gradient that represents the ratio of the unit volume changes from the undeformed domain to the deformed
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domain. µ and λ are Lamé coefficients consisting of Young’s modulus E and Poisson’s ratio ν, which can
be expressed as follows:

λ =
Eν

(1 + ν) (1− 2ν)
, µ =

E

2 (1 + ν)
.

Then, the corresponding first Piola-Kirchhoff stress is calculated as follows:

P (F ) = µF − µF−T + λ ln JF−T.

By contrast, the deformation gradient of the mesh-based method can be calculated directly by using
its edge vectors derived from each element. Meanwhile, for the particle-based method, computing the
deformation gradient on each discrete particle is difficult. Here, we adopt the idea of SPH [8] and use the
corrected SPH kernel to calculate the deformation gradient for each particle, as follows:

Fi =
∑

j

Vj(uj − ui)⊗ ∇̃W̃ij(X), (7)

where V is the initial particle volume and u = x −X is the particle displacement. In this case, we use
the corrected gradient of the corrected kernel ∇̃W̃ij to make the deformation gradient rotation aware.

First, the kernel function Wij , which interpolates the quantities into a specific particle from its sur-
rounding particles, is defined as follows:

Wpoly6(r, h) =

{

315
64πh9 (h

2 − r2)3, 0 6 r 6 h,

0, otherwise,

where r = |r| = ‖Xj −Xi‖2 is the radius of the kernel function and h = 0.0625 in our work. Then, the
gradient of the kernel function is derived as follows:

∇Wpoly6(r, h) =

{

− 945
32πh9 (h

2 − r2)2r, 0 6 r 6 h,

0, otherwise.

However, the aforementioned kernel function cannot preserve the angular momentum. Hence, we make
corrections to both the kernel function and its gradient. The corrected kernel is computed as follows:

∇W̃ij(X) =
∇Wij(X)− γi(X)

∑

j VjWij(X)
,

where γi(X) =
∑

j Vj∇Wij(X)/
∑

j VjWij(X).
The corrected gradient is formulated as follows:

∇̃W̃ij(X) = Li∇W̃ij(X), (8)

where the correction matrix Li = (
∑

j Vj∇W̃ij(X)⊗ (Xj −Xi))
−1.

With the deformation gradient discretized into each particle, we can use the energy function to calculate
the distance constraint of the particles. The constraint gradient is computed as follows:

∇xk
Ci(x) = ∇xk

Ψi(Fi) = Pi(Fi)∇xk
Fi, (9)

where the gradient of deformation gradient is derived as follows:

∇xk
Fi =

{

−
∑

j Vj∇̃W̃ij(X), k = i,

Vj∇̃W̃ij(X), k = j.

Here, we use the total Lagrange multiplier based on the idea of XPBD [22]:

∆λi = −
Ψi(Fi) + α̃iλi

∑

j wj

∣

∣∇xj
Ψi(Fi)

∣

∣

2
+ α̃i

, (10)

where α̃ = 1/∆t2. Then, by substituting (9) and (10) into (5), the position correction can be reformulated
as follows:

∆xi =
∑

j

(∆λjPj(Fj)∇̃W̃ji(X)Vi −∆λiPi(Fi)∇̃W̃ij(X)Vj). (11)

Notably, in simulating pure deformation, the kernel function only needs to be calculated once in the
initial configuration; thus, there is no additional computation cost to the PBD algorithm. The flow of
our algorithm is summarized in Algorithm 1.
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Algorithm 1 Simulation steps of our energy constraint PBD

1: vn+1 ← vn + ∆tM−1fn
ext;

2: xn+1 ← xn + ∆tvn+1;

3: Perform collision detection and response;

4: for iter := 1 to maxiterations do

5: for each energy constraint C(x) do

6: Compute deformation gradient F (Eq. (7));

7: Compute the total Lagrange multiplier ∆λ (Eq. (10));

8: λn+1 ← λn+1 + ∆λ;

9: Determine the position changes ∆x (Eq. (11));

10: xn+1 ← xn+1 + ∆x;

11: end for

12: for each collision constraint do

13: Compute the position changes ∆xcol (Eq. (12));

14: xn+1 ← xn+1 + ∆xcol;

15: end for

16: end for

17: Perform object cutting;

18: vn+1 ← 1
∆t

(xn+1 − xn).

(a) (b)

Figure 1 (Color online) Particle structure. (a) Colliding particles setting; (b) change in the relationship between particles within

a kernel function during the cutting process.

4.2 Collision and inversion handling

Concerning collision detection, we examine two layers of particles on the surface. If we only consider the
collision of surface particles, then the time step will be limited to a small setting, which can be solved by
adding a layer of colliding particles. We set a collision radius ri for each colliding particle. Figure 1(a)
shows the schematic of colliding particles. In the case of a collision between objects, we impose a simple
constraint Ccol

i (x) = ‖xi − xj‖ − d. We can detect the collision of particles if the distance between two
particles is less than the sum of their collision radii d = ri + rj . Collision correction is calculated as
follows:

∆x
col
i =

∑

j

wi

wi + wj

(d− ‖xi − xj‖)
xi − xj

‖xi − xj‖
. (12)

Collision correction is used to correct the particle position, as shown in Lines 13 and 14 of Algorithm 1.
Based on the collision between objects, we utilize an intuitive technique for self-collision. Self-collision
detection is triggered only if the initial distance between two particles is greater than a given value.

Because the linear constitutive model can inherently process the inversion problem, we directly combine
the linear and nonlinear models for handling inversion. To avoid the rotation aliasing problem in the
linear model, we adopt the corotated linear constitutive model for the inversion part. The energy density
function is defined as follows:

Ψ (F ) = µ ‖F −R‖
2
F +

λ

2
tr2

(

R
T
F − I

)

.

Then, the corresponding first Piola-Kirchhoff stress is calculated as follows:

P (F ) = 2µ(F −R) + λtr(RT
F − I)R,

where the deformation gradient F = RS is decomposed into a rotation matrix R and a symmetric tensor

S. We assess the inversion by the singular value decomposition of F = UF̂V
T
and check the sign of the
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Figure 2 (Color online) Uniaxial stress-strain curve. (a) StVK model; (b) combination of the StVK and corotated linear models;

(c) Neo-Hookean model; (d) combination of the Neo-Hookean and corotated linear models.

singular value in F̂ . When the StVK elastic body is compressed, its restorative force reaches a maximum
as the compression reaches a critical threshold (≈ 58% of the undeformed configuration). When the
singular value becomes less than the critical compression threshold, the restorative force decreases and
an inversion occurs. Then, we utilize the corotated linear model to prevent the volume from inverting.
We apply an analogous modification to the Neo-Hookean model. The comparison of the stress-strain
curves of different constitutive models is shown in Figure 2. Notably, the Neo-Hookean model exhibits
a stronger reaction to extreme compression than the two other models. However, in the case where the
deformation is inverted, the reaction is unclear. Conversely, the StVK model exhibits more resistance
against stretching than the two other models.

4.3 Anisotropy and plasticity simulation

Because of the continuum mechanics, we can easily simulate complex material behavior by tuning the
strain energy function. Inspired by Xu and colleagues [35], we decompose the energy function into the
isotropic and anisotropic energy terms, Ψ(F ) = Ψiso(F ) + Ψortho(F ), for the anisotropy simulation. We
directly employ the Neo-Hookean model of (6) for the isotropic elasticity term. To keep the material be-
havior of the anisotropic term consistent with that of the isotropic term, we use a simplified Neo-Hookean
model to simulate the anisotropic elasticity term. In this study, we mainly consider the orthotropic case.
Hence, assuming the orthogonal material directions are bi with i = 1, 2, 3, the orthotropic strain energy
can be computed as follows:

Ψortho(F ) =
∑

i

ωi(ξi), ωi(ξi) = βi

(

ξ2i − 1

2
− ln ξi

)

,

where βi = ‖Fbi‖2. ξi is the stiffness coefficient associated with the orthotropic direction bi. Then, the
first Piola-Kirchhoff stress tensor is calculated as follows:

P
ortho(F ) =

3
∑

i=1

ω′i(ξi)

ξi
Fbi ⊗ bi,

where ω′i(ξi) = βi(ξi − 1/ξi), bi ⊗ bi = bib
T
i . We determine that βi controls the scaling of ω′i(ξi), with

i = 1 representing the transversely isotropic material and i = 2 representing the orthotropic material.
For plastic deformation, we adopt the StVK constitutive model because its stress increases with tensile

deformation rapidly, thereby easily reaching the plastic yield criterion (as shown in Figure 2). The energy
density function of the StVK constitutive model is formulated as follows:

Ψ (F ) = µ ‖ǫ‖2F +
λ

2
tr2 (ǫ) ,

where ǫ = 1
2 (F

T
F − I) is the Green strain tensor. Then, the corresponding first Piola-Kirchhoff stress is

calculated as follows:

P (F ) = F (2µǫ+ λtr(ǫ)I).

We follow the process in [5] and decompose the strain into two components, that is, ǫ = ǫelas + ǫplas. By
using the von Mises yield criterion, plastic deformation occurs when the Frobenius norm of elastic strain
exceeds a critical value. Thereafter, the plastic strain will absorb part of the elastic strain. As a result,
the deformable object cannot be restored to its initial state even without external force.
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Table 1 Parameters and timingsa)

Experiment ♯Particle ms/f col(ms) ∆t/f S/f iter Elastic model (E, ν)

Tori (Figure 3) 50544 20.200 4.266 1/60 3 8 Neo-Hookean & Corotated (3000, 0.4)

Bunny (Figure 4) 41555 13.620 2.994 1/60 2 8 Neo-Hookean & Corotated (500, 0.4)

Cow (Figure 5 bottom) 188257 27.750 – 1/90 2 8 Neo-Hookean & Corotated (2000, 0.4)

Cow [5] (Figure 5 top) (1174842 tetrahedra) 187382 178.820 – 1/90 2 8 Neo-Hookean & Corotated (2000, 0.4)

Towel (Figure 6) 8404 11.952 – 1/60 4 10 Neo-Hookean & Corotated (50, 0.4)

Metal (Figure 7) 4875 15.978 7.200 1/60 4 8 StVK & Corotated (2000, 0.4)

Sausages (Figure 8) 38448 21.676 5.683 1/60 3 8 Neo-Hookean & Corotated (2000, 0.4)

a) “♯Particle” is the number of particles, “ms/f” is the total operation time per frame, “col” is the collision time per frame,

“∆t/f” is the time step per frame, and “S/f” is the number of substeps per time step.

Figure 3 (Color online) Simulation of 324 elastic tori containing 50544 particles falling to the ground along the walls.

Figure 4 (Color online) Self-collision detection of the bunny model falling to the ground. The images are selected from the same

frame of animation. The one on the left has no self-collision detection function, whereas the one on the right has a self-collision

detection function.

4.4 Object cutting

Because of our weakly structured particle model, we can easily deal with the fracture during object cutting.
For two adjacent particles, we assume that an edge connects them. The edge will be disconnected when
it intersects the cutting tool. In other words, the two particles are not acting on each other’s kernel
functions anymore. At the same time, to enhance stability, we will select and add an additional nearest
particle to the kernel constraint. Figure 1(b) shows the operation that regulates the relationship between
particles. In this case, the corrected kernel function in Subsection 4.1 needs to be recomputed.

5 Experimental results

Our implementations were executed on a 3.6-GHz Intel Core i7-6850K CPU and NVIDIA GeFore GTX
1080 GPU. Rendering was done in Houdini. The model size, computational efficiency, and parameter
settings are given in Table 1 (Figures 3–8). In addition to the cow compression experiment shown in
Figure 5, the dynamic process of deformation is fast because of the large strain energy, such that we can
reduce the time step of each frame to ∆t = 1/90 for observation. We use a fixed time step of ∆t = 1/60
per frame for all other experiments. In traditional PBD approaches, large iteration counts will make the
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Figure 5 (Color online) A cow model recovering from a completely compressed ball. The top row is the result of the method

in [5], whereas the bottom row is the result of our method.

Figure 6 (Color online) A towel model is stretched by the outward tensile forces that are perpendicular to the edges. The

anisotropic direction is set along a 45◦ angle.

Figure 7 (Color online) Comparison of the deformation between elastic and plastic materials, which simulates the process of

heavy objects from falling to bouncing. The top row is elastic material, whereas the bottom row is plastic material.

deformable object stiff. However, our method can control the stiffness by using a strain energy function.
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Figure 8 (Color online) Sausages are pushed out of the machine and cut with a knife, with the pieces falling into a glass box.

Collision detection is also performed in this scenario.

Figure 9 (Color online) Testing the effect of Young’s moduli E and Poisson’s ratios ν on the elastic deformation algorithm.

iter=60 iter=3 iter=1iter=15

∆t/f=1/60

S/f=2

∆t/f=1/60

S/f=4
∆t/f=1/60

S/f=10

∆t/f=1/60

S/f=21

Figure 10 (Color online) The parameter setting of time steps and the iterations of PBD solver to capture similar simulation

results. The armadillo is fixed with one hand and subjected to gravity.

Parameter testing. Because of the continuum mechanics, we can simulate more complex material
behavior according to the strain energy functions. By improving the constraint dependence through
XPBD, the stiffness coefficients can control the elastic strength of a deformable object more effectively.
We show the parameter testing in Figure 9 with different Young’s moduli E and Poisson’s ratios ν. In
Young’s modulus test, the object with its top fixed is affected by gravity, which is a volume force. We
observe that the larger Young’s modulus E is, the stiffer the object is. In the Poisson’s ratio test, the
object is pulled by a surface force at the bottom. We observe that the larger the Poisson’s ratio ν is, the
more the contraction in the direction perpendicular to the tension is. Moreover, the surface force produces
a more pronounced deformation than the volume force. We also test the relationship between the time
step and the iterations of the PBD solver. Figure 10 shows the parameter setting used to achieve similar
simulation effects. Meanwhile, Table 2 shows the corresponding implementation times. The simulation
time step is equal to “∆t/f” divided by “S/f”. We can conclude from the data shown in the table that
the simulation speed can be improved by appropriately choosing a smaller time step and fewer iterations.

Accuracy and robustness. In essence, SPH interpolation is similar to MLS with constant basis functions,
which cannot handle the rotation of objects. Usually, MLS adopts a linear or quadratic basis to ensure
linear consistency; however, it will reduce the computational efficiency. To maintain the efficiency of the
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Table 2 We test the effect of time steps and PBD iterations on the implementation timea)

∆t/f S/f Iterations of PBD solver Simulation time (s)

1/60 2 60 12.763

1/60 4 15 8.171

1/60 10 3 5.275

1/60 21 1 6.291

a) “∆t/f” is the time step per frame. “S/f” is the number of substeps per time step. The last column shows the simulation time

of 500 frames.

(a) (b) (c) (d)CSPK-PBD SPH-PBDMLSRKCMLSRK

Figure 11 (Color online) Rotation test of our SPH-PBD method and the MLSRK method [26]. (a) and (b) are the MLSRK

method with a constant basis, and we add our corrected kernel function into (a). (c) and (d) are our SPH-PBD method with and

without the kernel correction, respectively.
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Figure 12 (Color online) Comparison of relative error between our SPH-PBD method and the MLSRK method [26] with different

kernels.

standard SPH interpolation while enhancing its rotational invariance, we add a correction to its kernel.
Figures 11 and 12 show the comparison of the accuracy between our proposed method and MLSRK
in [26]. We regard the MLSRK with a linear basis as the baseline and compare the rotation errors of
four different kernels. We determine that our correction function is effective and has good compatibility.
We also compare the robustness of the two methods shown in Figure 13. When their velocities are large,
their simulation collapsed, indicating that the MLSRK is unstable under extremely large deformation.
Table 3 shows the comparison of the execution time of our corrected SPH kernel and the MLS kernel
with a linear basis. Results show that our proposed SPH-PBD method is more suitable for the real-time
simulation of large-scale interactive scenes than the MLS kernel with a linear basis.

Collision and inversion handling. Particle structures make collision detection easier, where we can use
some intuitive techniques for collision processing. The following experiments demonstrate the effectiveness
of our method. We simulate a complex collision situation in Figure 3, in which 324 elastic torus models
with 50544 particles fall to the ground. Our approach requires 20.2 ms per time step on average and
achieves a near real-time visual effect. In Figure 4, we simulate the animation of the bunny model falling
to the ground and compare the results with and without self-collision detection.

To demonstrate the stability of our algorithm, we simulate a completely degenerate configuration
in Figure 5. The figure shows a cow model recovering from an extremely compressed ball in a vacuum.
Notably, the algorithm is stable under high stress levels and deals well with the volume inversion problem.
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Figure 13 (Color online) Comparison of robustness between our SPH-PBD method and the MLSRK method [26]. We simulate

the animation of a cow placed on the ground with an initial velocity v0 and then bounced up.

Table 3 Time comparison between the corrected SPH kernel and the MLS kernel with linear basis. The performance was tested

on both CPU (run 500 times) and GPU (run 3000 times) with 17325 particles.

CPU (s) GPU (s)

Corrected SPH kernel 1.645 0.815

MLS kernel with linear basis 4.688 0.929

Furthermore, we compare our method with [5] and obtain similar results. The data shown in Table 1
indicate that our method is faster than that of [5] when the models have the same number of particles
because their energy constraints act on the elements, which are usually several times the number of
particles. By contrast, our energy constraints act directly on the particles.

Anisotropy and plasticity. Complex material behavior such as anisotropy and plasticity, can be easily
achieved by designing the strain energy and stress. Figure 6 shows the simulation of an anisotropic
towel model. We add an extra energy term in the 45◦ direction, which makes the material stiffer in that
direction. Then, we apply outward tensile forces perpendicular to the edges on the sides of the towel,
resulting in an oblique deformation. Notably, the direction perpendicular to the set direction is more
likely to produce tensile deformation.

We compare the elastic and plastic materials, as shown in Figure 7. Heavy objects are dropped onto
metal-like materials. After the objects bounce, the elastic material will return to its original shape,
whereas the plastic material will keep its bent shape. The deformation behavior of anisotropic and
plastic materials can be easily simulated by using the existing approaches.

Object cutting. As shown in Figure 8, we simulate a sausage cutting scenario in the food industry.
The sausages are pushed out of the machine and cut with a knife, with the pieces falling into a glass box.
At the same time, collision detection is performed in this scenario.

6 Conclusion and future work

In this study, we developed an improved PBD method based on continuum mechanics to simulate de-
formable objects. To reduce the dependence of the stiffness coefficient on the time step and iteration
count, we applied a total Lagrange multiplier based on the idea of XPBD to act on the position con-
straints. The method is discretized with weakly structured particles. For the deformation gradient used
to calculate the strain energy, we employed a corrected SPH kernel function to interpolate it into discrete
particles. Based on the improved PBD framework, we also introduced some simple methods to process
the collision and inversion problems. Because of the energy representation of the constraints, we directly
used existing approaches to simulate anisotropic and plastic deformation. Furthermore, we examined the
object cutting scenario, which can be more easily handled by our proposed method than by mesh-based
methods.

At present, our cutting simulation only involves the structural change of the particle model. We plan to
introduce fracture energy [2] to assess the crack origin and evolution direction in the future. Consequently,
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more complex fracture scenarios will be simulated.
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